

T.C.

Yıldız Technical University

Electric - Electronic Faculty

Computer Science & Engineering Department

StarTech®

Operating System Software

Junior Project

Project Supervizor

Prof. M.Yahya KARSLIGİL

The Project Team

9411009 Selçuk BAŞAK

9411011 Erdem HASEKİ

9411032 İrfan GÜNEYDAŞ

2

ÖNSÖZ

İşletim sistemi bilgisayar kullanıcıları ile bilgisayar donanımının arasında yer alan bir
programdır. İşletim sistemlerinin amacı kullanıcılara programlarını rahat ve verimli
olarak çalıştırabilecek bir ortam sağlamaktır. Bunun yanında bir işletim sistemi
bilgisayar sistemi üzerinde yapılan işlemlerin doğruluğunu sağlamak zorundadır.

İlk bilgisayar sistemlerinde işletim sistemleri kullanılmıyordu. Yapılan işlemler
doğrudan donanım üzerinden yapılıyordu. Bilgisayar teknolojisi geliştikçe, donanım
daha da güçlendi ve bu işlemlerin elle yapılması olanaksızlaştı ve ilk olarak ilkel
işletim sistemi benzeri yazılımlar kullanılmaya başlandı. Bu işletim sistemleri
gelişerek günümüzün zaman paylaşımlı, çok görevli işletim sistemleri olmuşlardır.

Bizim temel amacımız modern bir işletim sistemi geliştirerek, bilgisayar bilimlerinin
çok önemli bir konusu olan işletim sistemlerini daha yakından incelemek ve anlamak.
Geliştirilecek sistemi daha önce yapılmış bir sistemden geliştirmek yerine en baştan
tüm tasarımı kendimize ait bir sistem olmasını tercih ettik. Böylece yeni bir sistem
tasarlanırken daha değişik sonuçlara ulaşabilme imkanımız oldu.

Proje Grubu
İstanbul,1997

3

PREFACE

An Operating system is a program that acts as an intermediary between a user of a
computer and the computer hardware. The purpose of an operating system is to
provide an environment in which a user can execute programs in a convenient and
efficient manner. Beside that, the operating system must ensure correct operation of
the computer system.

First computer system did not use an operating system. The operations were
performed directly modifying hardware. As the computer technology advanced,
computer systems got more power, these operations can not be performed directly
on hardware system. As a result, first primitive operating systems was used. Those
systems has turned into today’s modern operating systems supporting time sharing,
multitasking.

Our main aim is to analyze and understand operating systems which is a very
important subject in computer science, by developing an operating system. Proposed
system does not depend on any other operating system ,instead, we would rather
develop a system of our own design. As a result, we may come across with some
new aspects of operating system.

 The Project Team
 Istanbul,1997

4

SUMMARY

StarTech
®
 is an operating system. It has based on PCs with an 80386 or better CPU.

Its main attributes includes protection, multiprogramming, time slice based
preemptive multitasking. It supports only one CPU PC systems. It uses protected
mode to utilize protection. It uses a three layer architecture, applications runs at top
and uses Application Program Interface(API) functions which is in the middle, and
system kernel which runs at the lowest level. Kernel and API is divided into several
parts so they can be thought as separate modules.

Writing an operating system software is a very advanced process. It requires a lot of
research on both operating system concepts and computer system hardware. To

some extend, StarTech
®
 is designed to be modern system but it may contain some

short comes, too.

5

ACKNOWLEDGMENTS

We appreciate any helps, advice, guidance about StarTech

®
 and those who have

shared their ideas, books, CDs, etc.

Special Thanks to:

Prof. M. Yahya Karslıgil
Yrd. Doç. Selim Akyokuş
Arş.Gör. Ahmet Haktanır
Arş.Gör. Ahmet Tevfik İnan

and also,*
Kerem Irgan
Onursal Tan
Sinan Kaya
Şeniz Gayde
Ülkü Gündüz

*(in the order of names)

6

CONTENTS
I. Önsöz 2
II. Preface 3
III. Summary 4
IV.Acknowledgments 5
V. Contents 6
1. Introduction 7
2. System Analysis 8
3. Feasibility 10
4. System Design 12

4.1.Disk Boot Strap Routine 15
4.2.System Initialization Routine 16
4.3.System Kernel 19

4.3.1.Processor Scheduler 19
4.3.2.Synchronization System 23
4.3.3.Memory Management System 24
4.3.4.System Device Drivers 26

4.3.4.1.Keyboard & Display 26
4.3.4.2.Floppy Disk 28
4.3.4.3.Hard Disk 29
4.3.4.4.Parallel Ports 30
4.3.4.5.Comm. Ports 31

4.4.Application Program Interface Functions 32
4.4.1.Process Execution System 32
4.4.2.Synchronization System 34
4.4.3.Interprocess Communication System 36
4.4.4.File I/O System 38
4.4.5.Communications etc . 46
4.4.6.Display/Keyboard I/O System 48
4.4.7.Miscellinous Functions 51

4.5.System Command Interpreter 52
4.6.System Tools & Applications. 53

5.Source Codes 54
Conclusion 56
References 57
Appendix 58

7

1. INTRODUCTİON

StarTech is an operating system for PCs with 80386 and better CPUs. It is
implemented as a protected-mode, stand-alone operating system that supports

process based multitasking. StarTech runs directly on the specified PC hardware

without support from any other operating system. StarTech implements virtual
memory. Because of its 32 bit architecture, it is powerful. There will be a handful of
demonstrations that illustrate the multi-programming and concurrency control and
other subsystems.

8

2. SYSTEM ANALYSİS

An operating system is an interface between user programs and bare hardware. It
should be easy to be used for users and easy to be implemented for system
programmers. There are several approaches in operating system design but the
system should use a modern one which is as possible as up to date system with its
attributes. Today’s desktop computers has even more power than old and huge
mainframe systems. Desktop computers also known as personal computers (PC).
PCs operating system has gained the features of those operating systems used on
mainframes.

From the view of a user operating systems are just like servant that does what the
user tells to do. Because of that, most operating systems redesigned their user
interface and most of the popular operating systems uses a graphical user interface.
But unfortunately there is no standard both easy to use and efficient. Actually, this is
a major subject and may be a project on its own. As a result, a period of a term is not
enough for developing a graphical user interface but it is assumed that it will have
this feature in future versions.

IBM PC/AT compatible machines have a set of properties common, but it is generally
supported by BIOS. 80386 and better systems have protected mode features but
unfortunately BIOS is written in real mode and calling it through protected mode
causes very high overhead(switch to V86 mode etc.). So, system device drivers
should be written from the scratch.

Memory management using virtual memory is another good feature of 80386 and
better processors. It should be used in a modern operating system which supports
multiprogramming because there may not be enough physical memory for all
process running at the same time.

At Last, StarTech ,as a modern OS , will have these features listed below.

System kernel is simple ,containing only code directly interface with hardware, all
other functions in the API. These are ,processor management, memory
management, I/O system and device drivers and synchronization system. Processor
management will use a time slice based preemptive method to implement
multiprogramming. Memory management will use virtual memory. Device drivers are
written only for those critical for the system ,that are keyboard, screen, floppy disks,
hard disks, printers and communication ports.

API is not complex that is application programmers will surely welcome. These
functions are interface between application programs and computer hardware or
operating system.

9

User interface is on text screen for now. But it is expected that in version it will be
graphical.

10

3. FEASİBİLİTY
 Writing an operating system requires many resources and researches.

Because StarTech supports many modern features, many problems arises. These
problems exists nearly all phases of the project. Designing is a really hard work but
can be worked out. Testing will be really awkward. To develop the system there must
be compiler for use.

 BCC 3.1 as 16 bit C/C++ Compiler

BCC32 as 32 bit C/C++ Compiler.
WATCOM 10.0a C Compiler.
TASM32 as 80386 protected mode Assembler.
TLINK32 as Linker.

Another point is to develop compilers for StarTech

®
 .Because of not having

opportunity to develop a compiler , it is planned that DOS compilers producing 32 bit
code with flat memory model will be used. The DOS executable program then post-
compiled by a routine, written by us, which will then be able to run in StarTech

®
.

11

Project Timing:

 15/3 23/3 30/3 6/4 13/4 4/5 11/5 18/5 25/5 1/6 11/7
System Analysis and
Study on OS
Kernel and API
Design
Implementation and
test

Project Assignments:

Selçuk Başak Process Management

Synchronization Operations

Erdem Haseki Main Memory Management
File System Management

İrfan Güneydaş I/O System Management
System Command Interpreter Program,

 and some utility programs

12

4. SYSTEM DESİGN

The Architecture of StarTech®

Command

 Interpreter

Application

Programs

Compilers

Utility Programs

Application Program

Interface

Memory Management

System

File Management

System

I/O System & Device

Management

Process

 Management

Synchronization

System

HARDWARE

SYSTEM

 General Descriptions of Subsystems

Process

 Management

 Keep track of processor and status of processes.

 Decide which process gets the processor, when, and how much (processor
scheduler).

 Allocate the processor to a processor to a process by setting up necessary
hardware registers.

 Reclaim processor when process relinquishes processor usage, terminates, or
exceed allowed time of usage.

 Optimize the use of CPU time.

Synchronization System

 Keep track of the system resources that is to be shared among the processes.

 if necessary, it assures that a resource is allocated to a process and it will not be
reallocated to another process at the same time.

 Handles the use limited system resources.

13

I/O System & Device

Management

 Keep track of the devices, such as console, communication ,disk etc.

 Allow access to hardware using an abstraction.

 Responsible for choosing an efficient the way of low level data transfers between
memory and external data storage or process devices.

 Allocation of the device and initiation of the I/O transfer.

 Optimize the use of devices.

Memory Management

System

 Keep track of the memory. What parts are in use by which program and what
parts are free.

 Decide which process gets the memory and how much.

 Allocate memory for a process when requested.

 Reclaim memory for later use.

 Optimize the use of memory.

 Prevents the user program from destroy operating system code and data .

File Management

System

 Keep track of the data on the disks.

 Decide which process get use of the files.

 Allow process to access to disk files in an easy, fast and efficient way.

 Design of the actual physical device storage method.

 Implements accessing routines to files.

Application Program

Interface

 Allows application programs to interact with operating system

 Abstracts the hardware devices for applications

 supports high level languages like C/C++.

Command

 Interpreter

 Interpret the user commands and apply them.

 Load application programs and initiate them.

 Implements many file operation that can be used from the command line.

14

Functional System Structure of StarTech®

Application Programs

 Application Program Interface

 (API)

Device

 Drivers

Memory

Management

System

File

Management

System

Processor

Scheduler

Synchronization

 System

HARDWARE

SYSTEM

15

4.1. DİSK BOOT-STRAP ROUTİNE

Disk Boot-strapping process is the first of the three stage of loading the StarTech
®
.

Disk Boot-strap routine is located at track 0,head 0,sector 1 of a floppy disk or the
first sector in a harddisk partition. This routine can be at most 512 bytes. As a result
it cannot load and initialize system. Its primary task is to load “System Initialization
Routine” of the StartTech®(Part 2) by using bios interrupt 13h at 9000:0000h and to
give control to it.

When an PC/AT machine is powered up or reset, control is transferred to 0FFFF:0h
by the 80x86 CPU. At that location ROM-BIOS resides. It first test the system. This
test is called POST(Power On Self Test) and will only occur by power on or cold
reset(by pressing reset button). Then ROM-BIOS executes an “int 19h”. “int 19h” ,in
return, attempts to load the sector at head 0, cylinder 0, sector 1, of a diskette or
fixed disk into memory at 0:7C00h, The BIOS checks the sector to see if it has a
boot signature (the value 055aah in the last two bytes of the sector). If the sector
does have that signature, transfer control there. That is, CS is set to 0 and IP is set
to 7C00h. This sector has the operating system bootstrap loader. At this point the
processor is in 16-bit ``real'' mode, which still uses the Intel segmented architecture.
The entire boot sector is written in assembly code.

 Memory Map at Boot up.

Address Task Size

9000:????

9000:0000

for “System Initialization routine”

0000:7DFF

0000:7C00

“Disk Boot Strap Routine”

512b

0000:04FF

0000:0400

BIOS Data Area

256b

0000:03FF

0000:0000

Interrupt Vector Table(real
mode)

1Kb

8086 real mode addresses

16

4.2. SYSTEM INİTİALİZATİON ROUTİNE

This part of the system is loaded by the “Boot Strap Routine”. “Boot Strap Routine”
leaves control to this routine. The tasks of this part heavily complex.

1. Investigates the hardware and bios data.

 identifies CPU.

 find port addresses for devices

 get system information using bios functions

 get memory size
2. Loads Kernel and API from boot disk to memory at proper locations.

 load memory images for Kernel and API using bios interrupt 13h.
3. Initialize and Enter “Protected Mode”.

 enable A20 gate.

 initialize descriptor tables

 switch CPU to “protected mode”

 form page directory table and page tables

 enable “paging”

 start first task and set TSS.
4. Initialize the Kernel and API.

 initialize runtime properties of the Kernel and API
5. Load and Run Command Interpreter.

 load using API and give control to it.

17

Address Usage Size

Free Physical Memory for Applications

00101000

Page Tables

**

00100FFF

00100000

Page Directory Table

4Kb

000FFFFF

000C0000

ROM

000B8FFF

000B8000

Color Text Screen Memory

000B7FFF

000B0000

BW Text Screen Memory (not supported)

000AFFFF

000A0000

Graphics Screen Memory

0009FEFF

00090000

System Initialization Routine

64Kb*

0008FFFF

00040000

API Code and Data

320Kb

0003FFFF

00010000

Kernel Code and Data

192Kb

0000FFFF

00001000

Global Descriptor Table (max. 7680 entry)

60Kb

00000FFF

00000900

StartTech System Data Area

1792b

000008FF

00000800

copy of bios system data at 0400-04FF

256b

000007FF

00000000

Interrupt Descriptor Table(256 entry)

2Kb

(32 bit physical addresses)
(*) Maximum size
(**) Determined from the size of the virtual memory.

18

StartTech System Data Area (at 00000900h)

Offset (hex) Description Size

00 CPU type WORD
7: 80386
8: 80486
9: Pentium or better

02 Coprocessor type WORD

04 Physical Memory Size DWORD

08 Virtual Memory Size DWORD

0C User Memory Start DWORD

10 User Physical memory Size DWORD

14 User Virtual memory Size DWORD

19

4.3.SYSTEM KERNEL

4.3.1.PROCESSOR SCHEDULER

What is a Process in StarTech
®
?

In StarTech

®
, a process is whole the code, data, stack and any resources allocated

for it. Every process has at least one thread called main thread. If necessary one or
more threads may be created using proper API functions.

System Level Attributes of a Process:
1- Owner Process ID.(Index in Process_List)
2- Process Attributes word

What is a Thread?

A thread is an execution path for a process. This means it uses the common code
and data with other threads in the same process but has separate stack, and copy of
CPU registers. Threads are atoms of processes.
Task Switches are also made on the threads not on the process level.

System Level Attributes of a Thread:
1- Process ID in which the thread is
2- Selector for TSS of the thread

TSS is Task State Segment contains everything about a thread. Most of it required
by Intel 80386 architecture. Other parts are a link to previous TSS, status of the
thread, thread ID, process ID, some thread attributes.

Processor scheduler of StarTech

®
 uses round robin scheduling algorithm which is a

time slice based preemptive method for multitasking.

20

NO FUNCTION NAME TASK

() INIT_SCHEDULER Initialize the process scheduler

input none

output none

 Thread Management

(0*) CPU_CREATE_THREAD Allocates a new thread ID in thread_list

input eax = process id

output eax = thread id
ebx = TSS selector

21

(0) CPU_ADD_THREAD Puts a new thread to ready queue

input eax = thread id

output none

 CPU_SCHEDULER Performs a task switch

input none

output none

(2) CPU_MOVETO_READY_LIST Moves current thread to ready queue

input none

output none

(3) CPU_MOVETO_IO_LIST Moves current thread to a I/O queue

input eax = device id

output none

(4) CPU_MOVETO_SEMAPHORE Moves current thread to a semaphore queue

input eax = semaphore id

output none

(5) CPU_IO_DISPATCHER Dispatch an I/O head thread to ready queue

input eax = device id

output eax = status

(5*) CPU_WAIT_DISPATCHER Dispatch an I/O queue thread to ready

queue

input eax = device id
ebx = thread id

output eax = status

(6) CPU_SEMAPHORE_DISPATCHER Dispatch a semaphore head thread

to ready queue

input eax = semaphore id

output eax = status

(7) CPU_SWAPOUT_THREAD Moves a ready queue thread to memory wait

queue

input eax = thread id

output eax = status

22

(8) CPU_SWAPIN_THREAD Moves a memory wait queue thread to
ready queue

input eax = thread id

output eax = status

(9) CPU_TERMINATE_THREAD Clears a thread from thread_list and its

queue

input eax = thread id

output eax = status

() CPU_CHECK_THREAD_STATE

input eax = thread id

output eax = status

 Process Management

(0) CPU_CREATE_PROCESS Allocates a new process ID in proc_list

input eax = owner’s process id
ebx = process attributes

output eax =process id

(7) CPU_SWAPOUT_PROCESS Swaps out all the threads of a process

input eax = process id

output none

(8) CPU_SWAPIN_PROCESS Swaps in all the threads of a process

input eax = process id

output none

(9) CPU_TERMINATE_PROCESS Clears a process form proc_ist

input eax = process id

output none

() CPU_CHECK_PROCESS_STATE

input eax = process id

output none

23

 4.3.2.SYNCHRONİZATİON SYSTEM

StarTech

®
 uses semaphores to implement synchronization system. There is an array

of semaphores some of which are allocated for special purposes such as system
devices. These semaphores are counting semaphores and these functions are uses
processor scheduler functions to implement wait state.

SYNC_INIT initialize synchronization system

input none

output none

SYNC_CHECK test to see if a semaphore is available

input eax = semaphore id

output eax = status

SYNC_WAIT grant to access a semaphore if it is available

input eax = semaphore id

output none

SYNC_SIGNAL signals freeing of a semaphore

input eax = semaphore id

output none

SYNC_SET sets a semaphore to a value

input eax = semaphore id
ebx = value

output none

24

4.3.3.MEMORY MANAGEMENT

 47 32 31

0
Logical Address selector Offset

 descriptor table

segment descriptor +

linear address directory page offset

 page frame

physical address

 page directory page table

directory entry page table entry

page directory
base register

Intel 80386 address translation diagram

25

Page Frame Allocation Table
 Limit Base
Process ID 63 32 31 0

0

:
:
:

 :
:
:

X*

* This table will be dynamic so size of the table will be calculated according to physical memory size.
Maximum size can be 128 Kb.

Physical memory and swap-file usage is performed by a bit-string. Each bit in
these bit-strings indicates a 4Kb page used or not.

FUNCTION NAME TASK

MEM_VIRTUAL_ALLOC Allocates 4KB page frames

input eax = process id
ebx = number of 4K pages to allocate

output eax = address of first page
on error :eax=0

MEM_VIRTUAL_DEALLOC frees page frames.

Input eax = process id

output eax = status

MEM_MEM_TO_SWAPFILE swaps out a 4Kb from memory to disk

input none

output none

MEM_SWAPFILE_TO_MEM swaps in a 4Kb from disk to memory

input input from control register

output none

26

4.3.4.SYSTEM DEVİCE DRİVERS

4.3.4.1.KEYBOARD & DİSPLAY FUNCTİONS

FUNCTION NAME TASK

IO_CON_INIT_PROC clears a process’ keyboard buffer and
 screen buffer

input eax = process id

output none

IO_CON_GET_CON_PROCESS get current concole process

output none

output ax = con process

IO_CON_SET_CON_PROCESS set current console process

input ax = con process

output none

IO_CON_KBD_READ gets a character from keyboard buffer

input eax = process id

output ah = Scan Code
al = ASCII code

IO_CON_KBD_STS gets shift keys status

input none

output ax = shift status

IO_CON_KBD_CLR used to clear kbd buffer

input eax = process id

output none

IO_CON_SCR_WRITE puts a character on screen buffer

input eax = process id
bl = ASCII character
bh = color

output none

IO_CON_SCR_CLR clears screen buffer

input eax = process id

output none

27

IO_CON_SCR_SET_CUR set cursor postion.

input eax = process id
bx = position

output none

IO_CON_SCR_GET_CUR get cursor position

input eax = process id

output bx = position

IO_CON_SCR_SWAP copy process’ screeen bufffer to

screen buffer

input eax = process id

output none

IO_CON_SCR_SET_BUFFER set a process’ screen buffer pointer

input eax = process id
bx=selector
edx=offset

output none

28

4.3.4.2.FLOPPY DİSK FUNCTİONS

IO_FDD_INIT initialize flopyy controller

input none

output none

IO_FDD_READ read a sector from floppy disk

input eax = thread id
ebx = drive no
ecx = Linear Sector Address(LSA)
es:edi = buffer

output ax =status

IO_FDD_WRITE writes a sector to a floppy disk

input eax = thread id
ebx = drive no
ecx = Linear Sector Address(LSA)
es:edi = buffer

output ax =status

IO_FDD_STATUS gets status of alast operation performed

input eax = drive no

output ax = status

29

4.3.4.3.HARD DİSK FUNCTİONS

IO_HDD_INIT Initialize hard disk controllers

input none

output none

IO_HDD_READ read a sector into memory

input eax = thread id
ebx = drive no
ecx = Linear Sector Address(LSA)
es:edi = buffer

output ax =status

IO_HDD_WRITE write a sector to hard disk

input eax = thread id
ebx = drive no
ecx = Linear Sector Address(LSA)
es:edi = buffer

output ax =status

IO_HDD_STATUS get hard disk status

input eax = drive no

output ax = status

30

4.3.4.4. PARALLEL PORT FUNCTİONS

IO_PRN_INIT reset printer

input al = printer no

output ah =status

IO_PRN_WRITE sends a character to printer

input al = printer no
ah = character

output ah =status

IO_PRN_STATUS returns the state of the printer

input al = printer no

output ah =status

31

4.3.4.5. COMM. PORT FUNCTİONS

IO_COMM_INIT reset the port and data buffer

input al = comm port no

output ah =status

IO_COMM_RECIEVE retrieves a char from the data buffer

input al = comm port no

output al = char
ah = status

IO_COMM_SEND sends a char to comm port

input al = comm port no
ah = char

output ah =status

IO_COMM_STATUS returns the state of the

input al = comm port no

output ah =status

32

4.4. APPLİCATİON PROGRAM INTERFACE

4.4.1. Process Execution System

CreateProcess()

Specification: Starts execution of a process.

INPUT

CommandLine pSTR Program file name, path

PROCID CreateProcess(pSTR CommadLine);

Returns: process id (non zero) if successful, zero otherwise.

TerminateProcess()

Specification: Ends execution of a process.

Input:

ProcessID PROCID Process ID of process to end

ReturnStatus DWORD Return code for return

BOOL TerminateProcess(PROCID ProcessID,

DWORD ReturnStatus);

Returns: TRUE if successful, FALSE otherwise.

ExitProcess()

Specification: Ends execution of a process.

Input:

ReturnStatus DWORD Return code for return

DWORD ExitProcess(DWORD ReturnStatus);

Returns to the operating system.

33

Wait()

Specification: Suspends a task for some specified time period.

Input:

Period DWORD Delay in mili seconds

void Wait(DWORD Period);
Returns: nothing



34

4.4.2. Synchronization System

CreateSemaphore()

Specification: Creates a semaphore

Input:

SemaphoreName pSTR Name of the semaphore

InitCount DWORD Initial semophore count.

SEMAPHORE CreateSemaphore(pSTR SemaphoreName,

DWORD InitCount);
Returns:

on success: Semaphore ID,
on failure : zero.

DeleteSemaphore()

Specification: deletes a semaphore.

Input:

SemophoreID SEMAPHORE Semaphore to wait.

void DeleteSemaphore(SEMAPHORE SemaphoreID);

GetSemaphoreID()

Specification: Gets a semaphore’s ID

Input:

SemaphoreName pSTR Name of the semaphore

SEMAPHORE GetSemaphoreID(pSTR SemaphoreName);

Returns:

on success: Semaphore ID,
on failure : zero.

35

WaitSemaphore()

Specification: Suspends a task until an event occurs or time out.
If successful then decreases semaphore

Input:

SemophoreID SEMAPHORE Semaphore to wait.

BOOL WaitSemaphore(SEMAPHORE SemaphoreID);

Returns: TRUE if event occurs, FALSE otherwise.

ReleaseSemaphore()

Specification: Releases a semaphore.(increments)

Input:

SemophoreID SEMAPHORE Semaphore to wait.

BOOL ReleaseSemaphore(SEMAPHORE SemaphoreID);

Returns: TRUE if successful, FALSE otherwise.



36

4.4.3. Interprocess Communication System

CreateMailBox()

Specification: Creates a mail box.

Input:

MailBoxName pSTR Mail box name.

Size DWORD Size of mailbox in bytes

MAILBOX CreateMailBox(pSTR MailBoxName,

DWORD Size);
Returns:

on success ID of mailbox,
otherwise zero.

GetMailBoxID()

Specification: Gets a mail box ID.

Input:

MailBoxName pSTR Mail box name.

MAILBOX GetMailBoxID(pSTR MailBoxName);

Returns:

on success ID of mailbox,
otherwise zero.

GetMailBoxInfo()

Specification: Gets information about a mail box.

Input:

MailBoxID MAILBOX Mail box ID.

MailInfo DWORD * Mail box info structure.

BOOL GetMailBoxInfo(MAILBOX MailBoxID,

DWORD *MailInfo);

Returns: TRUE if successful, FALSE otherwise.

37

SetMailBoxInfo()

Specification: Sets a mail box state.

Input:

MailBoxID MAILBOX Mail box ID.

MailInfo DWORD Mail box info structure.

BOOL SetMailBoxInfo(MAILBOX MailBoxID,

DWORD MailInfo);

Returns: TRUE if successful, FALSE otherwise.

SendMail()

Specification: Send a mail.

Input:

MailBoxID MAILBOX Mail box ID.

Data pVOID data to send

Size DWORD size of data

How DWORD Actions to take

BOOL SendMail(MAILBOX MailBoxID,

pVOID Data,
DWORD Size,
DWORD How);

Returns: TRUE if successful, FALSE otherwise.

GetMail()

Specification: Get a mail.

Input:

MailBoxID MAILBOX Mail box ID.

Data pVOID data to recieve

Size DWORD size of data

How DWORD Actions to take

BOOL GetMail(MAILBOX MailBoxID,

pVOID Data,
DWORD Size,
DWORD How);

Returns: TRUE if successful, FALSE otherwise.

38

4.4.4. FİLE SYSTEM

StarTech® File System (STFS)

 StarTech® File System (STFS) specifications:

File System Structure : indexed allocation using linked scheme
Directory Structure : tree-structured directories
Directory Implementation : using linear list
Free Space Management : using bit vector

Cluster Size= 4 KB = 8 Sector
Sector Size = 512 Byte

Disk Usage:

Sector # Usage

0 Boot Sector

1 - 160 Bit Vector

161 - 168 Root Entry Table cluster #1

169 - 176 Free disk space cluster #2

 ... - ... “ “

 ... - ... “ “

 ... - ... “ “

 ... - ... “ “

 ... - ... “ cluster #n

... Swap Disk Area excluded from file
system

Directory Entry Table:

Entry[0] First Entry 64 byte

Entry[1] “

Entry[2] “

Entry[3] “

... “

 “

 “

Entry[62] Last Entry “

NextDirPtr Pointer to next
entry table for this
directory(if any)

“

Directory Entry Structure :

39

typedef struct {
 WORD Type; // 0x0000 - unused entry
 // 0x0001 - directory entry
 // 0x0002 - file entry
 WORD Attrib; // file attributes - not used for directories -
 // 0x0001 - archive
 // 0x0002 - hidden
 // 0x0004 - read-only
 // 0x0008 - system
 // 0x0010 - executable
 // 0x0020 - binary file
 // 0x0040 - ASCII file
 char Name[21]; // 20 char long name
 char Ext[6]; // 5 char long extension
 DWORD FileSize; // upto 4GB file
 DWORD BlockCount; // number of clusters allocated (not used for dirs)
 DWORD Pointer; // pointer to next data item cluster no 1 - xxx
 // A 0 means end.
 FILE_DATETIME CreateDate; // Cretion date
 FILE_DATETIME ModifyDate; // Modify date
 FILE_DATETIME AccessDate; // Acess date
}TDIRENTRY;
 directory-1-

 to directories
or

 file indexes

Root

 directory-1-

 file cluster -1

 file index

 file cluster 2

40

CreateFile()

Specification: Creates a file

Input:

FileName pSTR filename to created

BOOL CreateFile (pSTR filename);

OpenFile()

Specification: grants access to a file

INPUT

FileName pSTR file name

FileMode DWORD file parameters can be
F_READ 0x00000000
F_WRITE 0x00000001

HFILE OpenFile(pSTR FileName,

DWORD FileMode);
Returns:

On success, non-zero value, a file handle,Otherwise, zero

CloseFile()

Specification: closes a file

INPUT

FileHandle HFILE an open file handle

BOOL CloseFile(HFILE FileHandle);

Returns:

On success, TRUE
Otherwise, FALSE

41

ReadFile()

Specification: reads from a file to a buffer

INPUT

FileHandle HFILE an open file handle

BufferSize DWORD # of bytes to read

Buffer pVOID input buffer for read

DWORD ReadFile(HFILE FileHandle,

DWORD BufferSize,
pVOID Buffer);

Returns: # of bytes read

WriteFile()

Specification: writes to a file

INPUT

FileHandle HFILE an open file handle

BufferSize DWORD # of bytes to write

Buffer pVOID output buffer for write

DWORD WriteFile(HFILE FileHandle,

DWORD BufferSize,
pVOID Buffer);

Returns: # of bytes written

EndOfFile()

Specification: see if end of file

INPUT

FileHandle HFILE an open file handle

BOOL EndOfFile(HFILE fh);

42

SeekFile()

Specification: positions read/write head on a position in a file

INPUT

FileHandle HFILE an open file handle

Offset DWORD offset from From

From BYTE SEEK_SET 0 from beggining of the file
SEEK_CUR 1 “ current position
SEEK_END 2 “ end of file

BOOL SeekFile(HFILE FileHandle, DWORD Offset);

Returns:

On success, TRUE
Otherwise, FALSE

GetFileInfo()

Specification: get attributes of a file

INPUT

FileName pSTR file name

OUTPUT

FileAttrib pFILEATRB file attributes

BOOL GetFileInfo(pSTR FileName,

pFILEATRB FileAttrib);
Returns:

On success, TRUE
Otherwise, FALSE

SetFileAttrib()

Specification: set attributes of a file

INPUT

FileName pSTR file name

FileAttrib DWORD file attributes

BOOL SetFileAttrib(pSTR FileName,

DWORD FileAttrib);
Returns:

On success, TRUE
Otherwise, FALSE

43

FileSearch()

Specification: searches current directory for a file or directory.

INPUT

FileName pSTR file name

BOOL FileSearch(pSTR fname);

Returns:

On success, TRUE
Otherwise, FALSE

FileList()

Specification: returns specified file in the

INPUT

Path pSTR path

EntryNo DWORD index

OUTPUT

FileInfo pFILEATRB file information

BOOL FileList(pSTR Path,

DWORD EntryNo,
pFILEATRB FileInfo);

Returns:
On success, TRUE
Otherwise, FALSE

Remove()

Specification: delete file or directory

INPUT

FileName pSTR file name

BOOL Remove(pSTR FileName);

Returns:

On success, TRUE
Otherwise, FALSE

44

Rename()

Specification: rename a file or directory

INPUT

OldName pSTR file name

NewName pSTR file name

BOOL Rename(pSTR OldName,

pSTR NewName);

Returns:

On success, TRUE
Otherwise, FALSE

CreateDir()

Specification: creates a directory

INPUT

DirName pSTR directory name

BOOL CreateDir(pSTR DirName);

Returns:

On success, TRUE
Otherwise, FALSE

GetCurDir()

Specification: gets current directory

OUTPUT

DirName pSTR directory name

void GetCurDir(pSTR DirName);

45

SetCurDir()

Specification: sets current directory

INPUT

DirName pSTR directory name

BOOL SetCurDir(pSTR dirname);

Returns:

On success, TRUE
Otherwise, FALSE

DiskFree()

Specification: gets disk space in bytes

INPUT

DriveNo DWORD drive no

DWORD DiskFree(DWORD driveno);

Returns: Free disk space in bytes

DiskSize()

Specification: gets disk space in bytes

INPUT

DriveNo DWORD drive no

DWORD DiskSize(DWORD driveno);

Returns: all disk space in bytes



46

4.4.5. COMMUNİCATİONS

OpenComm()

Specification: grants access to a comm port

INPUT

CommNo WORD comm port no

CommSettings pCOMMSTRC communication parameters structure

BOOL OpenComm(WORD CommNo,

pCOMMSTRC CommSettings);

Returns:
On success, TRUE
Otherwise, FALSE

SendComm()

Specification: send a string of chars to comm port

INPUT

CommNo WORD comm port no

Buffer pVOID buffer to send

BufLen DWORD length of the buffer

DWORD SendComm(WORD CommNo,

pVOID Buffer,
DWORD Buflen);

Returns:
Number of bytes sent.

ReceiveComm()

Specification: Gets a string of chars from a comm port

INPUT

CommNo WORD comm port no

BufLen DWORD length of the buffer

OUTPUT

Buffer pVOID buffer

DWORD ReceiveComm(WORD CommNo,

pVOID Buffer,
DWORD Buflen);

Returns: Number of bytes received.

47

CloseComm()

Specification: releases access to a comm port

INPUT

CommNo WORD comm port no

BOOL CloseComm(WORD CommNo);

Returns:

On success, TRUE
Otherwise, FALSE

OpenPrinter()

Specification: grants access to a printer

INPUT

PrnNo WORD printer no

BOOL OpenPrinter(WORD PrnNo);

Returns: On success, TRUE, otherwise, FALSE

SendPrinter()

Specification: send a string of chars to printer

INPUT

PrnNo WORD printer no

Buffer pVOID buffer to send

BufLen DWORD length of the buffer

DWORD SendPrinter(WORD PrnNo,

pVOID Buffer,
DWORD Buflen);

Returns: Number of bytes sent.

ClosePrinter()

Specification: closes a printer

INPUT

PrnNo WORD printer no

BOOL ClosePrinter(WORD PrnNo);

4.4.6. DİSPLAY/KEYBOARD I/O

48

GetCh()

Specification: gets a character from keyboard (no echo)

WORD GetCh(VOID);

Returns:
 a character from keyboard

GetChe()

Specification: gets a character from keyboard and echos

char GetChe(VOID);

Returns : a character from keyboard

GetStr()

Specification: gets a string from keyboard

INPUT

InStr pSTR string to be read.

void GetStr(pSTR InStr);

PutCh()

Specification: puts a character to display.

INPUT

OutCh char char to be written.

void PutChar(char OutCh);

PutChClr()

Specification: puts a character to display.

INPUT

OutCh char char to be written.

Color WORD color attributes

void PutCharClr(char OutCh, WORD Color);

PutStr()

49

Specification: puts a string to display

INPUT

OutStr pSTR string to be written.

void PutStr(pSTR OutStr);

PutStrClr()

Specification: puts a string to display

INPUT

OutStr pSTR string to be written.

Color WORD color attributes

void PutStrClr(pSTR OutStr, WORD Color);

GetShiftKeys()

Specification: gets status of shift keys

WORD GetShiftKeys(void);

Returns: shift keys status

ClrScr()

Specification: Clears Screen

void ClrScr(void);

GotoXY()

Specification: position the cursur

INPUT

Column BYTE X -coordinate(0-79)

Row BYTE Y- coordinate(0-24)

void GotoXY(BYTE Column,BYTE Row);

50

WhereX()

Specification: gets current cursor X position

BYTE WhereX(void);

Returns:
 cursors X position.

WhereY()

Specification: gets current cursor Y position

BYTE WhereY(void);

Returns:
 cursors Y position.

GetConsoleProcess()

Specification: gets current console process’ process id

DWORD GetConsoleProcess(void);

Returns:
 current console process’ process id.

SetConsoleProcess()

Specification: Copies process screen buffer to physical screen and sets it current
console process

INPUT

ProcID DWORD process id

void SetConsoleProcess(DWORD ProcID);



51

4.4.7. MİSC. FUNCTİONS

SystemVersion()

Specification: returns system version e.g. 100 means 1.00

DWORD SystemVersion(void)

CPUType()

Specification: gets CPU and coprocessor type

DWORD CPUType(void)

PhysicalMemory()

Specification: gets physical memory size

DWORD PhysicalMemory(void)

VirtualMemory()

Specification: gets virtual memory size

DWORD VirtualMemory(void)

GetDateTime()

Specification: gets system date and time

OUTPUT

DateTime pTDATETIME current time data

void GetDateTime(pTDATETIME datetime)

SetDateTime()

Specification: Sets system date and time

INPUT

DateTime pTDATETIME time data

void SetDateTime(pTDATETIME datetime)

52

4.5.SYSTEM COMMAND INTERPRETER

Command interpreter is the user interface of StarTech®. It is a text mode simple
user interface that enables users to run programs, terminate them and perform disk
operations on file system.

User commands:
(English) (Turkish) Explanation

attrb oz Sets attribute of a file
cd kd Changes current directory
clr t Clears screen
c k Copies a file
date t Displays and changes date
dd sk Deletes a directory
dl sd Deletes a file
l l Lists current directory
h or ? y or ? Displays help
nd yk Creates a new directory
m hf Displays memory sizes
p yl Displays current directory
prn yaz Prints a file to printer
ren id Renames a file
rend idk Renames a directory
time z Displays and changes time
ver sur Displays Current System version

53

4.6.SYSTEM TOOLS & APPLİCATİONS.

Application programs will be developed using C and StarTech® API library functions.
Following steps should be performed.

1. API function library header file must be included.
2. Source must be compiled using an 32 bit DOS compiler.
 If BCC32 used source must be compiled to assembly first then it
requires these changes. a. remove .FLAT directive

b. add ASSUME CS:_TEXT,DS:_DATA
c. compile it using TASM

 If WCC386 is used, it must be compiled using small model for
switch(-ms).

3. Link object code with library object code and start up object files.
4. Convert produced .EXE file to StarTech executable file format using

“MakeStar.exe” utility.

54

 5. SOURCE CODES

Source listings are on separate and continous pages.

BootStrap:
 Source\BootStrp\Bootn.asm
System Initialization:
 Source\SysInit\Sysinit.asm
Kernel:

Source\Kernel\Init\Kernel.asm
Source\Kernel\Init\˜Kernel.asm
Source\Kernel\Process\Cpusched.asm

 Source\Kernel\Synchon\Syncsys.asm
 Source\Kernel\Memory\Memory.asm
 Source\Kernel\Device\Device.asm
 Source\Kernel\Device\Console.asm
 Source\Kernel\Device\Floppy.asm
 Source\Kernel\Device\Hdd.asm
 Source\Kernel\Device\Printer.asm
 Source\Kernel\Device\Comm.asm
API:
 Source\API\ALL\API.c

Source\API\ALL\Api_end.asm
 Source\API\Process\Proc_api.c
 Source\API\SyncSys\ Syncsys.c
 Source\API\IPC\ipc.c
 Source\API\FileSys\Filesys.c
 Source\API\CommPrn\Comprn.c
 Source\API\Console\Console.c
 Source\API\Misc\Misc.c

Command Interpreter:
 Source\Command\Command.c

Tools & Applications:
 Source\App\Edit.c

55

Development Tools:
 reloc2.c reloc2.exe EXE file relocator (Updated to handle files
more than 64K)
 setloc.c setloc.exe sets an EXE’s relocation items to a value

 putfile.cpp putfile.exe Copies files to Disk Sectors (Updated to
handle files more than 64K)
 sectorc.c sectorc.exe Reads contents sectors from disk

 makestar.c makestar.exe (Post-compiler) converts a DOS 32bit EXE to
StarTech® executable format

56

CONCLUSİON

The project has just finished. We have finished coding and paritally tested it. Kernel
is programmed using 80386 assembly and partially 80386 machine language and
API is coded with C and inline assembly. Alpha test has been performed on finished
parts of the system.

The current code is useful both as a tool for operating system development and for
exploration of the Intel architecture. We discuss in this section several
enhancements that are necessary or interesting extensions of the current work.

1. Direct Calls to Kernel:
In the present design, all access to kernel via API for applications. ın some cases like
console device drivers some functions can be called directly from kernel which would
reduce call gate overhead two times.

2. Multi-thread support in API:
Currently processor scheduler part of the kernel supports thread based multi-tasking
but API do not allow to create more than one thread per process. This may be
changed by allocating LDT dynamically.

3. Cache for File System:
In STFS, there is no caching mechanism but this would be done at device driver
level more efficiently. The cache would surely improve system performance greatly.

4. Local Memory Allocation:
There is no local memory management, it is supposed that proposed applications
should request its data in their data segments. But this could be done dynamically.

57

REFERENCES

1. IBM PC/AT Technical Reference,IBM,1984

2. INTEL 80386 PROGRAMMER'S REFERENCE MANUAL ,Intel,1986

3. DONOVAN John J. - MADNICK Stuart E. :Operating Systems ,McGRAW-
HILL Book Comp ,1986

4. DONOVAN John J. :Systems Programming ,McGRAW-HILL Book Comp ,1987

5. TANENBAUM Andrew S. :Operating Systems:Design and Implementation,
Prentice-Hall,1987

6. ADAMS Phllip M. :Writing DOS Device Drivers in C, Prentice
Hall,1990

7. NELSON Ross P. :80386/80486 Programming Guide, Microsoft
Press,1991

8. ABEL Peter :IBM PC Assembly Language and Programming,Prentice-
Hall,1991

9. DOUGLAS V.Hall :Microprocessors and Interfacing, programming and
hardware, McGRAW-HILL,1992

10.GALVIN Silberschatz :Operating System Concepts ,Addison-

Wesley,1994

11.SAATÇİ Ali :Bilgisayar İşletim Sistemleri ,Hacettepe Univ.

12.SCHILDT Hebert :Windows 95 Programming in C and C++,McGRAW-

HILL,1995

13.PC Intern, McGraw-Hill,1995

14.SCHILDT Hebert :C,The Complete Refercence , McGRAW-HILL,1995

15.RUA Pınar, Öztürk Özgür :PC'nin Sırları , Sistem Yayıncılık,1995

58

APPENDİX

Real and Protected Modes.
Beginning from 80286, Intel CPUs
have ability to work in Protected Mode
(older CPUs have Real Mode only).
For compatibility reasons, all CPUs
start in Real Mode after reset. Below
are presented main differences
between Real Mode and Protected
modes for Intel CPUs. Note there are:
Real Mode, Protected Mode, Virtual
8086 Mode (they will be frequently
called RM, PM, VM86, respectively;
also 286+(386+) will mean Intel
80286(80386) or better).

There are some differences between
these modes in memory addressing
(PM can address all memory, while RM
can't unless it is set in PM on
386+, and VM86 cannot unless using
PM supporting it to remap memory
- this way EMM386 works); instruction
set (some instruction are not
allowed in RM), privileges (something
can be forbidden in PM for less
privileged code, many operations are
forbidden in VM86), interrupt
handling. PM supports multitasking,
PM can run tasks in VM86 (the
VM86 cannot function alone, must
have PM code supporting it; it works
similarly 8086 CPU with few
enhancements except interrupt
servicing
which goes through PM). PM cannot
store data to code segment (unless
by aliasing; MOV CS:[BX],AX is illegal
in PM). VM86 and PM on 386+ can
have selective I/O port access
restrictions (some ports can be
accessed

without causing exception and other
can't).
Memory addressing and Paging.

In any mode, opcode defines some
offset and segment of referenced
memory
address, e.g. mov ax,es:[bx+si+1] -
segment es, offset bx+si+1, push si
- segment ss, offset sp-2, opcode itself
is referenced by segment cs and
offset ip; the address is translated to
Linear Address by adding the
offset to base of the segment and the
Linear Address is then translated
to Physical Address which is outputed
by CPU on its address pins.
In RM or VM86, the base is
segment*10h; in PM the base is taken
from
descriptor table (LDT or GDT) and can
have any value.
The value in segment register is called
"selector" and its bits 15-3
specify offset in LDT or GDT (the
offset is multiply of 8), bit 2 is 0
for GDT, 1 for LDT, bits 1-0 specify
RPL (Requested Privilege Level).
Unless Paging (possible in PM and
VM86, on 386+ only) is enabled,
Physical Address = Linear. With
Paging, low 12 bits of Linear Address
go to Physical, other are used as index
to two-level page tables
(first bits 31-22 select page directory,
then bits 21-12 select page).
Paging can also restrict access to
some pages (in a way non-privileged
code can read it only or has no access
at all), or define non-present
pages which have assigned physical
addresses and put in memory in a way

59

transparent to program when access to
their Linear Address is attempted.

Note Linear Address space is 4GB on
386+, and probably no system has so
much physical memory: Paging makes
system able to simulate it has.

Segment has also limit. Initially, the
limit is 0FFFFh for all segment
registers and cannot be changed in
RM or VM86. In PM it is loaded from
LDT or GDT when segment register is
loaded. On 286 in PM the limit can
be up to 0FFFFh, on 386+ in PM it can
be up to 0FFFFFFFFh.
Also, PM allows "expand down"
segments which allow access from
address
limit+1 to maximum possible value of
limit (depend on segment type).

Privilege Levels and Rules.

In RM, CPU has full privileges. In PM
and VM86, they can be restricted.
This reduces possibility of making
disasters by bad code.

Base rules: cannot access more
privileged data or call less privileged
code than own privilege (although can
return to less privileged code).
Additional: call to more privileged code
cannot use any target address
caller wants, it can use addresses
specified by system only; call to
more privileged code must change
stack to make sure enough stack
space
is available for called code (so caller
cannot cause crash in it).

There are 4 levels: level 0 is full
privilege (except Debug Registers,
which can be protected from access
even from level 0; some instructions

are reserved for level 0 only), the
bigger level the less privileges
are. Few terms used for Privilege
Levels: CPL - Current PL, DPL -
Descriptor PL, RPL - Requested PL (in
selector), IOPL (in flags) -
max CPL allowing I/O sensitive
opcodes (CLI, STI, PUSHF, POPF,...).

Unless accessing Conforming Code
segment, privilege rules require
max(CPL,RPL)<=DPL. To execute
code (by FAR CALL or JMP) need
DPL<=CPL
(note unless it is Conforming, must be
DPL=CPL and RPL<=CPL) - cannot
call less privileged procedure, for
example. To transfer control to
code with less PL (more privileged),
must CALL via call gate (in such
a case, need
max(CPL,RPL)<=gate_DPL, but for
code the gate refers to
may be code_DPL<gate_DPL; the
gate is entry in GDT or LDT; privilege
rules require also target_code_DPL <=
CPL for CALL, = for JMP), this
also requires TR to point to valid TSS
because it switches stack: old
SS:[E]SP are pushed on new stack,
then parameters (as defined in call
gate) are pushed, finally CS:[E]IP are
pushed. On return from the call
CPU detects RPL of CS on stack >
CPL and switches stack back (if =, no
stack switch, < inhibited by privilege
rules), for proper functioning
parameter counts on RET and in call
gate must match. For stack segment
DPL must be equal CPL (so in more
privileged mode no crash is possible
due to incorrect stack setting in less
privileged, and in the less
privileged there is no access to more
privileged mode stack).

The RPL is for system to block
possibility to pass a pointer from user

60

code which is invalid in user mode and
valid in system: system uses RPL
as for user code and gets access
violation error in such a case.
It can be done using ARPL opcode
which adjusts RPL for a selector, and
sets ZF if changed (to inform OS
invalid access might be attempted).
OS uses it to set RPL of the pointer to
CPL of the application code.

It is possible to check what access
having to a segment by opcodes like
VERR, VERW, LAR, LSL. They all set
ZF if having access, clear if not.
First two simply verify R/W access,
LAR gets bits defining access right
for a segment, LSL gives the segment
limit value. These opcodes allow
checking what would cause access
violation, instead getting the error.

Conforming code segments can be
accessed without high privilege, they
are for libraries which are shared
between levels (otherwise would need
keep separate copy for every level).
Data kept in them can be accessed
from any PL (providing they are
readable) and code can be accessed
(by
jump or call) from same or less
privileged PL - in such a case CPL is
NOT changed by the jump or call.
Cannot execute conforming code from
more privileged PL: it is not trusteed
enough to get CPL<DPL (greater
privilege than defined in system
tables).
I'm not sure how return from non-
conforming to conforming code works,
seems RPL taken from CS on stack
determines new CPL (which may be
less
privileged than the conforming code
segment DPL).

Some instructions are allowed at
CPL=0 only. They are:

Clear TaskÄSwitched Flag (CLTS),
Halt Processor (HLT), loading some
system registers
(GDTR,IDTR,LDTR,MSW,TR), any
access to CRx,DRx,TRx.
Some other require CPL<=IOPL. They
are: IN, INS, OUT, OUTS, CLI, STI.
Also, POPF behavior depends on CPL:
if CPL>0, IOPL and VM aren't
changed by POPF, if CPL>IOPL, IF
(interrupt enable) isn't changed.

Interrupts.

In every mode, there is an array
containing information what action is
to be taken in case of interrupt. Its first
entry corresponds to INT 0,
next to INT 1, and so on. It is called
IDT(Interrupt Descriptor Table).
In RM, each entry in the IDT is simply
far address of interrupt service
routine. Initially IDT is located at
address 0 and has 100h entries
(400h bytes; some CPU-s have its limit
0FFFFh but the remainder isn't
accessible in RM); on pre-80286 CPUs
the IDT address and size cannot be
changed, on 286+ can load and store
them using LIDT and SIDT opcodes.

In PM the IDT has 8-byte entries which
can be interrupt, trap or task
gates. Trap differs from interrupt by
leaving interrupt flag same as
in interrupted code. Task gate causes
calling another task. They all
have DPLs and interrupt instruction
causes General Protection error
if CPL > interrupt or trap gate DPL.
However, other interrupt sources
have "CPL 0" - they can access any
gate needed.

Some conditions can cause an
Exception. They are (for 80386): divide
error (0), debug exceptions (1), non-
maskable interrupt (2), breakpoint

61

(3), overflow (4, on into opcode),
bounds check (5, on bound opcode),
invalid opcode (6), coprocessor not
available (7), double fault (8,E),
coprocessor segment overrun (9,P),
invalid TSS (10,PE), segment not
present (11,PE), stack error (12,E),
general protection error (13,E),
page fault (14,PE), coprocessor error
(16); marked by P can occur in
PM and VM86 only, marked by E push
error code on stack if they occur
in PM or VM86 (so stack is: error, IP,
CS, flags; the error code is
usually either 0 or selector causing the
exception (in case selector is
invalid or non-accessible), with flags
on low order bits: bit 0 means
external source, bit 1 IDT selector, bit
2 LDT; for page fault it is
set of flags (bits 3-31 undefined): bit 0
set if page protection
violation, 1 if writing, 2 if user mode),
most of them push IP of
opcode causing them, except 3,4,9
which push IP of next opcode.
Note: interrupt cannot be serviced at
PL>CPL (unless via task switch),
attempt to do it causes General
Protection error.

Interrupt processing in PM is more
complicated when interrupt handler
has Privilege Level other than current
code. It is handled similarly
CALL via gate: stack is switched, new
SS:SP are taken from TSS, old
SS:SP are pushed on the new stack,
then flags, CS, IP and eventually
error code (for some exceptions) are
pushed.
In VM86 interrupt pushes
GS,FS,DS,ES,SS,ESP,EFLAGS,CS,EI
P (exception
also error code) onto PL 0 stack. There
is VM bit in EFLAGS set to tell
interrupt occured in VM86. Note IDT
must contain task gates and 80386

trap or interrupt gates pointing to a
non-conforming code segment with
DPL=0 only - interrupt service must
come through PL 0 or task switch.
The VM86 itself has CPL 3 and is
allowed in 386 task only.

Descriptor Tables (PM only).

Global Descriptor Table(GDT) can
contain descriptors of any type except
interrupt and trap gates. It is necessary
for PM. First entry in GDT
isn't used - it corresponds to null
selector which can be loaded into
segment register but causes exception
if used for memory addressing.

Local Descriptor Table(LDT) can
contain "normal" segment descriptors
(not e.g. TSS) and call or task gates
only. Usually every task has its
own LDT (changed on task switch).
The LDT must have descriptor in GDT.

Interrupt Descriptor Table(IDT) was
discussed in "Interrupts" section.

"Normal" segment descriptors are
referenced when a segment register is
loaded and they describe a memory
area and give some access to it.
Bit 2 of selector used selects table: 0
means GDT, 1 means LDT.
Other descriptors can be Task State
Segment(TSS), and gates. They can
be referenced "as a code segment",
e.g. by far jump or call and they
cause transferring control to task or
code segment referenced by them.
It is kind of indirect jump or call (they
contain target selector).
TSS or gate pointing to TSS cause
task switch. Gate can be used to
transfer control to more privileged code
not accessible directly.
TSS can be also referenced by LTR
(Load Task Register) opcode and it

62

is done once during PM initialization.
LDT descriptor can be loaded
into LDTR(register) by LLDT opcode
and usually it is done once.

Segment and System Descriptors.

The following segment types (in byte
[descriptor+5]) are supported
(for all bit 7 means present in memory,
bits 5-6 keep DPL which says
what is maximum CPL which can
access the descriptor, the restriction is
for all descriptors, not segments only,
except conforming segments):

10h+flags - data: bit 1 - writable, bit
2 - expand down
18h+flags - code: bit 1 - readable,
bit 2 - conforming

for both, bit 0 is set by any access. The
descriptor also contains
limit in word [0] (in 386 segments
extended to bits 0-3 of byte [6])
and base in bytes [2..4] (in 386
segments extended to byte [7]).
Byte [6] keeps few additional flags: bit
7 - granularity (limit is in
4kB pages; e.g. limit 0 means
0..0FFFh accessible), bit 6 - 32-bit
addressing (applies to code and stack
- use EIP, ESP, makes expand down
segment upper limit 4GB), bit 5 must
be 0, bit 4 is for programmer.

01h+flags - TSS: bit 1 - busy, bit 3 -
386 TSS
02h - LDT
04h+flags - call gate
05h - task gate
06h+flags - interrupt gate: bit 0 -
trap, bit 3 - 386.

for all gates, word[2] keeps selector,
word[0] and word[3] keep offset
of called code (ignored for task gate),
byte[4] keeps word count (0-31)

for copying in case of inter-level call
(call gate only, else ignored);
TSS and LDT have base and limit in
same form as code and data segments
have, they can have bit 7 set in byte [6]
to specify limit in pages.
Word [6] should be 0 for the descriptor
to mean the same on 286/386.

LDT is similar GDT, except not all
descriptor types are allowed.
TSS holds entire task state (all
registers: general, segment, flags,
ip, ldtr); it also keeps link to caller TSS
(valid if the task was
activated by INT or CALL) and stacks
(SS and [E]SP) for PL 0,1,2
(they are used when more privileged
code is invoked via gate from less
privileged). 386 TSS has also debug
trap bit (if set, causes INT 1 on
task switch to the TSS), I/O bit map
(saying which I/O addresses can
be accessed when CPL>IOPL without
General Protection exception), and
CR3 value for the task (can remap
memory on task switch).

Page tables:

both page directory and page table
entries keep referenced address in
bits 31-12, have bits 11-9 reserved for
programmer, must have bits 8,7,
4,3 set to 0; bit 5 is called A
(accessed), it is set by CPU on access
to the entry, bit 6 is called D (dirty), it is
set if referenced memory
is written; bit 0 is called P (present), all
other are ignored if it is
not set; bit 2 allows user (CPL=3)
access if set, bit 1 allows user to
write (together with bit 2 only), for
CPL<3 read/write is allowed for
any setting of bits 1 and 2 (no
protection against system this way).

63

Note page table entries used are
usually cached by CPU: modifying
them
in memory may cause no mapping
change until the cache is reloaded.
The
cache is flushed every time CR3
(which points to first page directory
entry) is loaded. Bits 0-11 of CR3 must
be 0 (directory page-aligned).
Addressing through page tables:
CR3+(Linear_Address SHR 20) AND
0FFCh
is address in Page Directory, the entry
at the address contains Page
Table address; Page Table address +
(Linear_Address SHR 10) AND 0FFCh
is address in Page Table and the entry
at the address contains base
address of the page, combine it with
bits 11-0 of Linear_Address and
the result is Physical Address. In case
of any error, CR2 is set to the
Linear Address causing the error and
error code explains what error.
Note: if Paging is enabled, CR3 must
keep Physical Address of Page
Directory and all other addresses are
Linear Addresses.

64

